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The question of how many hidden layers and how many hidden nodes should

there be always comes up in any classification task of remotely sensed data using

neural networks. Until today there has been no exact solution. A method of

shedding some light to this question is presented in this paper. A near-optimal

solution is discovered after searching with a genetic algorithm. A novel fitness

function is introduced that concurrently seeks for the most accurate and compact

solution. The proposed method is thoroughly compared to many other methods

currently in use, including several heuristics and pruning algorithms. The results

are encouraging, indicating that it is time to shift our focus from suboptimal

practices to efficient search methods, to tune the parameters of neural networks.

1. Introduction

During any application of neural networks for the classification of remotely sensed

data, the same question always rises; how many hidden layers and how many nodes

in each layer should be used? Although it has been almost two decades now since the

first introduction of neural networks in remote sensing (Benediktsson et al 1990)

there exists no exact method to answer this question (Mas and Flores 2008), and it is

a critical question since the selection of topology has a profound impact on

classification results.

Traditionally identification of topology has been based on trial and error, on

heuristics sometimes followed by trial and error, and on pruning or constructive

methods as discussed in the following section. None of these methods has the

theoretical rigor of revealing optimal or at least near-optimal solutions. The

objective of this paper is to bridge this chasm by presenting a method based on

genetic algorithms (Goldberg 1989, Holland 1992a, b). The proposed solution can

be summarized as the synergy of a neural network and a genetic algorithm that

searches for topologies, based on a novel fitness function, aiming to concurrently

optimize performance while minimizing network complexity. The pressure on

compactness can be varied according to specific needs.

In the sequel current practices with respect to setting hidden layer topology are

reviewed in §2. The proposed method based on searching with the genetic algorithm

is introduced in §3. It is then applied in a case study and compared with the state-of-

the-art methods in §4. Finally, conclusions are briefly discussed in §5.
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2. Current methods

In this section the methods currently deployed to identify efficient network

topologies are presented. Before that the theoretical bounds of optimal topologies

are discussed.

2.1 Theoretical bounds of optimal topology

The root of any discussion on topological bounds is probably Kolmogorov’s

theorem stating that any continuous function defined on an n-dimensional cube can

be represented by sums and superpositions of continuous functions of one variable

(Kolmogorov 1957). Hecht-Nielsen (1987) imported this theorem later in neuro-

computing by proving that any continuous function can be represented by a neural

network that has only one hidden layer with exactly 2n + 1 nodes, where n is the

number of input nodes. Several authors in remote sensing use this 2n + 1 figure as a

panacea to either fix the number of nodes in the first hidden layer or to justify the

lack of need to search for topologies that have two hidden layers. This is not the case

however as Hecht-Nielsen stated that the 2n + 1 rule is not for any class of activation

functions but for a specific one (Hecht-Nielsen 1987). This activation function is

much more complex, compared with the commonly used sigmoidal functions. It has

been suggested (Kurkova 1992) that two hidden layers should be used to

compensate for lost efficiency when using regular activation functions. The

argument that it is sufficient to use a single hidden layer still holds when using

regular transfer functions (e.g. sigmoidal) but the number of required hidden nodes

can be as high as the number of training samples (Huang and Babri 1997, Huang

2003). The purpose of using a second hidden layer is to drastically reduce the total

required number of hidden nodes. Huang (2003) proved that in the two-hidden-layer

case, with m output neurons, the number of hidden nodes that are enough to learn N

samples with negligibly small error is given by

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz2ð ÞN

p
: ð1Þ

Specifically, he suggests that the sufficient number of hidden nodes in the first

layer is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mz2ð ÞN

p
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= mz2ð Þ

p
, ð2Þ

and in the second it is

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N= mz2ð Þ

p
: ð3Þ

As the optimal topology is judged by the capacity to generalize on unseen data, the

most accurate structure will have fewer nodes than that suggested by equations (1)–

(3) that are good to over-fit the training data.

In summary, topologies with a first and a second hidden layer should be searched

having at worst as many hidden nodes as that suggested by equations (2) and (3)

respectively.

2.2 State of the art

In the absence of an exact paradigm to estimate an optimally or near-optimally

performing neural network structure, four methods are currently deployed.
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2.2.1 Trial and error. This is the most primitive path, and it is not uncommon to

yield severely suboptimal structures especially when adopted by inexperienced users.

2.2.2 Heuristic search. Several heuristics exist in the literature amalgamating

knowledge gained from previous experiments on where a near-optimal topology

might exist. The objective is principally to devise a formula that estimates the

number of nodes in the hidden layers as a function of the number of input and

output nodes. The estimate can take the form of a single exact topology to be

adopted (Hecht-Nielsen 1987, Hush 1989, Wang 1994, Ripley 1993) or of a range of

topologies that should be searched (Fletcher and Goss 1993, Kanellopoulos and

Wilkinson 1997). Some heuristics come from the literature regarding neural

networks in general (Hecht-Nielsen 1987, Fletcher and Goss 1993, Ripley 1993),

whereas others have been introduced by experimenting with spatial data (Paola

1994, Wang 1994, Kanellopoulos and Wilkinson 1997). In practice these heuristics

are frequently used as points of departure for subsequent search by trial and error.

This seems to be a wise approach as in most cases the heuristics lack the theoretical

evidence to support the discovery of an optimal structure. Note that none of the

heuristics presented here takes into consideration the number of samples which is an

integral part in equations (1)–(3).

2.2.3 Exhaustive search. Searching through all possible topologies is normally not

an option for any real-world application. It is not that the number of alternatives is

exceedingly large but rather that the time required to evaluate each alternative is

long. An exhaustive search is further complicated due to the noisy fitness evaluation

problem (Yao 1993), i.e. the fact that neural networks produce different results due

to different initialization conditions even when everything else is kept fixed. This is

why a single run is actually not enough to evaluate a topology. Multiple runs are in

fact needed. In this experiment, it has been found that the side-effects of the noisy

fitness evaluation problem are reduced by increasing the number of samples. It is

known that in remote sensing, the availability of samples varies widely with

circumstances. If, however, samples are available, the number of samples used

should be progressively increased while observing the variance of the classification

results. There is a point where the inclusion of additional samples yields no benefit

towards the stabilization of results.

2.2.4 Pruning and constructive algorithms. Pruning and constructive algorithms

aim at devising an efficient network structure by incrementally adding or removing

links (weights) in a network that has redundantly more or initially none respectively.

Optimal Brain Damage (Le Cun et al. 1990) is a commonly used pruning algorithm

that progressively removes the weight that causes the least increase in training error.

To simplify computation, it makes the assumption that the network’s Hessian

matrix is diagonal. Optimal Brain Surgeon (Hassibi and Stork 1993) makes no such

assumptions, and it demands no retraining after the pruning of a weight. Kavzoglu

and Mather (1999) recently conducted a comparison of the most common methods

and concluded that Optimal Brain Surgeon outperforms the rest.

3. Proposed method

As will be apparent shortly, the proposed method is novel in two aspects. First,

although genetic algorithms are used in other domains, it seems that they are

frequently neglected in remote sensing where methods with limited capacity in
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estimating network structures are still in use. As a result, the effectiveness of neural

networks is frequently compromised. A second contribution of this work is that a

novel fitness function is introduced to evaluate each solution. The function aims at

concurrently maximizing classification accuracy and at the same time minimizing

network complexity.

3.1 Symbiosis of genetic algorithms and neural networks

The proposed method is based on the synergy of genetic algorithms and neural

networks. The problem can be formulated as a search task in the architecture space

where each point represents an architecture (Liu et al. 2000). Following the

discussion in §2.1, topologies with up to two hidden layers are searched. The number

of nodes of the two hidden layers of the network structure is directly coded in a

binary chromosome. The length , of the chromosome is 10 bits; the first six are

reserved for the first hidden layer, whereas the remaining four are for the second

hidden layer as shown in figure 1. The process involves the transformation of the

binary numbers, corresponding to the number of nodes in each hidden layer, to

decimal numbers. A constant is then added to reduce computation requirements.

Ideally, to be able to search for a wider range of topologies, more bits would be

required. Preferably, up to the numbers set by equations (2)–(3) should be searched

for the first and second hidden layer respectively. Due to performance limitations

the string is restricted to what is mentioned above. This does not skew the results, as

the lower topologies excluded are clearly suboptimal by containing too few nodes.

The actual results justify also the use of the higher limit of the topological structures

as the optimal topologies are found below the upper bound of searched topologies.

As shown in figure 1, no constant is added to the number of nodes in the second

hidden layer. This is done in order to maintain the possibility of constructing and

evaluating networks with only one hidden layer, i.e. having zero nodes in the second

hidden layer. The importance of this implementation path is that it gives the chance

to the genetic algorithm to answer the question of how many hidden layers are

sufficient. In summary, topologies between 10:[20–83]:[0–15]:5 are searched. The

Figure 1. Mapping of the two hidden layer topology of the neural network to a
chromosome to be optimized by the genetic algorithm.
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network is eventually built based on the number of nodes in each layer dictated by

the genetic algorithm. It is then trained and its performance evaluated according to

the fitness function set. The accuracy matrix (Congalton 1998) is constructed after

each run in order to evaluate the results. The performance metric used here is overall

accuracy. This could easily be extended however to include other indices such as the

Kappa coefficient (k-hat).

The neural network settings are kept constant throughout the process. Training is

performed with a fully connected feed forward multilayer perceptron using the

Levenberg–Marquardt back-propagation variant (Werbos 1974, Rumelhart et al.

1986, Hagan and Menhaj 1994). Learning rate is set to 0.03 and momentum to 0.9.

Both values are constant though time and are used in all methods compared. Note

however that the specific training algorithm ensures very fast and efficient training.

The transfer function is tan-sigmoid. Training is terminated when the overall testing

data set accuracy drops. The winner-takes-all rule is applied to the output of the

neural network to obtain a single output class per input vector. All input data are

normalized to [21, 1].

On the side of the genetic algorithm most choices are based on the

recommendations of Goldberg (2002). Two-point crossover is set to 0.75, and

tournament selection with a size of 4 (Goldberg 2002, chap. 8) and uniform

mutation of 0.01 is used. Fitness is scaled by rank. Population n, maximum number

of function evaluations and maximum number of generations are set respectively,

according to Goldberg (2002, chap. 10), as:

n~‘2 log210 ‘ð Þ~100 ð4Þ

max function-evaluationsð Þ~‘ log10‘~10 ð5Þ

max generationsð Þ~‘2 log210 ‘ð Þ
�

n~10: ð6Þ

These settings have been found to work well in practice.

3.2 Accuracy-over-compactness fitness function

The assumption is made that compactness, i.e. having as few nodes in the topology

as possible, is considered an additional merit to overall verification set classification

accuracy. It is essentially a multi-objective task of finding the most efficient and at

the same time the less redundant network skeleton. The formula of the novel fitness

function is:

f~ezs
c{cmin

cmax{cmin
: ð7Þ

Overall verification classification error e corresponds to that of the current

topology. The complexity factor c is measured as the number of weights in each

searched topology. The parameters cmax and cmin correspond to the maximum and

minimum complexity allowed given the length of the chromosome used to code

solutions. The chromosome used in this case, shown in figure 1, contains 6 bits for

the first hidden layer. The maximum decimal number that can be represented by 6

bits is 63. Given that we choose to add the constant of 20 to the number of nodes in

the first hidden layer (figure 1), the maximum number of nodes in the first hidden

layer becomes 63 + 20583. In a similar manner the maximum number of nodes for
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the second hidden layer is 15 as we have four reserved bits in the chromosome and

zero is added (figure 1). The highest allowed topological structure is thus

10 : 83 : 15 : 5 which has 2150 degrees of freedom; hence cmax52150. At the other

end, the minimum topology allowed is 10 : 20 : 5 with 300 degrees of freedom or

cmin5300. The two values cmin and cmax are easily calculated based on the number of

bits used for each layer in the chromosome plus a constant that we chose to add. The

overall objective of using cmax and cmin is to normalize the complexity of each

topology tested to the interval [0,1] so that it can be smoothly incorporated to the

fitness function. In the ideal case this should be cmin51 and cmax5 +‘ but in practice

these values are set according to the computing power available so that the

algorithm converges at a reasonable time. The accuracy sacrifice percentage s is the

only user-specified parameter. The meaning of it is how much accuracy we are

willing to sacrifice for a more compact solution. If s is set to 1 (default) in effect it is

assumed that solutions that are up to 1% less accurate can be considered more fit if

they are more compact. If we set s50, compactness ceases to be an objective. In any

case, the s parameter is an absolute threshold. Essentially it is assumed that the

objective is merely the minimization of overall verification classification error. By

exerting no other pressure it is expected that the most accurate individuals in the

population with prevail.

With this fitness function accuracy is preferred to compactness. The range of s

parameter is problem-dependent. In easy classification problems it can be relaxed

whereas in difficult ones it has to remain low. Note in addition that in multi-

objective optimization problems, for the non-dominated solutions, following the

Paretto terminology, it is not trivial to decide which is best (Goldberg 1989, chap. 5).

This fitness function can be easily used by other researches since the only user-

defined coefficient has quite a straightforward meaning. Note also that there is no

need for logarithmic scaling of complexity or accuracy since rank selection is

adopted for the genetic algorithm. This in turn relieves us from setting the curvature

of the logarithmic function which used to be one of the main problems in previous

fitness functions such as in (Siedlecki and Sklansky 1989). We are quite confident in

this choice as rank-based selection procedures outperform proportional ones

(Goldberg 2002, chap. 8, p. 114).

4. Experimental results

4.1 Data set and sampling

The experimental data set refers to Lefkas island in the western part of the Hellenic

Republic. Inputs to the system are seven LANDSAT 7 ETM + bands; plus elevation,

slope and aspect (table 1) which are derived from SRTM data (SRTM, 2000). The

LANDSAT scene was acquired on July 2000. Outputs are five CORINE Level 1

land use classes (CORINE, 2000), viz. artificial surfaces, agricultural areas, forest

and semi-natural areas, wetlands, and water bodies. The CORINE landcover data

set is used as the reference to annotate the output vector. Notably the dimensions of

this multisource dataset are relatively small compared with hyper-spectral imagery.

However, most of the classification tasks in remote sensing are done in that order of

dimensionality. In addition, using the proposed method with hyper-spectral data

would require more powerful non-standard computer hardware.

As many as 19 044 samples are selected corresponding to 1% of the total available.

A stratified random sampling strategy is adopted so that all classes are equally
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represented (,3800 samples per class). That percentage is set by trial and error. The

classification is done also for the remaining 99% of the data and the results

evaluated after the topology is fixed. The samples are split into equal parts (i.e. 6348

samples each) to form three sets namely training, testing, and validation. The

terminology is consistent with Bishop (1995, chap. 9). The testing set is used to

terminate training done with the training set. The validation set is kept independent

and used in accuracy assessment only after training has converged. Re-sampling has

been tested several times with negligible impact on the results.

4.2 Method comparison

4.2.1 Heuristics. In table 2 the results of several commonly used heuristics are

displayed. Many of those heuristics have also been used in Kavzoglu and Mather

(1999) although somewhat differently. For example, the Kanellopoulos–Wilkinson

rule originally refers to a range of topologies rather than exact ones as implied in

Kavzoglu and Mather (1999). Also, the upper bound is up to four times the number

of nodes in the input layer (Kanellopoulos and Wilkinson 1997, Stahakis and

Vasilakos 2006). Thus, results for the low, medium, and high bound of this rule are

shown. The general observation is that larger topologies yield better results or,

stated another way, most of the heuristics tend to underestimate the complexity of

this classification problem. This conforms to findings in previous work in a

completely different context (radar for oil spill detection; Stathakis et al. 2006). In

that paper the number of input features is concurrently evolved with the number of

nodes, in a binary output classification problem (oil spill or look-alike) with only

one hidden layer and a standard fitness function. Conversely, the current paper is

focused on selecting an optimal hidden topology while keeping the features to be

used constant in a much more complex classification problem with five land-cover

types, one or two hidden layers and a novel fitness function. Furthermore, small

topologies produce more unstable results. None of the heuristics suggests the use of

a second layer for that many nodes in the input and output layers.

4.2.2 Pruning. Two pruning methods are tested viz. Optimal Brain Damage and

Optimal Brain Surgeon. The maximum topology proposed among all heuristics, a

10 : 40 : 5 structure, is adopted as the starting point. All testing samples are used to

guide pruning, and all verification set samples are used to calculate the overall

accuracy. The progress of pruning for both algorithms is shown in figure 2. It is

Table 1. Characteristics of the samples used for training, validation and testing (original
values).

Band Mean Median Standard deviation Min Max

LANDSAT 1 92.9 90 14.2 71 202
LANDSAT 2 75.1 73 20.4 42 206
LANDSAT 3 76.5 72 30.0 29 251
LANDSAT 4 62.7 74 30.2 11 148
LANDSAT 5 91.8 99 53.9 11 254
LANDSAT 6 154.7 158 12.7 130 187
LANDSAT 7 61.6 60 37.7 9 217
DEM 145.6 26 240.5 240 1140
Slope 9.9 6.9 10.7 0 65.8
Aspect 129.6 109.25 119.4 21 35.96
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evident that while both algorithms can remove a number of links without any

significant accuracy degradation, there is hardly any improvement in accuracy.

These results are well in accordance with those in Kavzoglu and Mather (1999). The

best classification results are shown on table 1. The computation resources required

for both algorithms are high, with Optimal Brain Surgeon being more demanding.

4.2.3 Genetic algorithm with accuracy over compactness. Note that in this

classification problem ten input and five output neurons are needed. Furthermore,

6348vectors consist eachof the sampledata sets.Hence, according to equations (2)–(3),

the theoretical upper bound for this problem is a 10 : 271 : 151 : 5 structure.

Setting in the proposed fitness function s51, the complexity of two representative

solutions evolves, as shown in figure 3. In both cases the number of nodes in the first

hidden layer is increased to about 70 (maximum is 83). It follows that this is the

minimum number of nodes to achieve near-optimal performance. Regarding the

number of nodes in the second hidden layer, there are two different results. In

the first run, the number increases to 10 nodes (the maximum is 15) indicating that a

Table 2. Method comparison for the same data set. Results for the heuristics are averaged
over 50 runs.

Method name Reference Range Topology Mean Max Min s

Hecht–Nielsen rule Hecht-Nielsen
(1987)

10 : 21 : 5 70.68 71.92 69.45 0.63

Kanellopoulos–
Wilkinson rule also
Hush rule

Kanellopoulos
and Wilkinson
(1997)

Low 10 : 20 : 5 70.54 71.87 68.48 0.69

Medium 10 : 30 : 5 73.42 74.98 71.19 0.71
Hush (1989);
Kanellopoulos
and Wilkinson
(1997)

High 10 : 40 : 5 73.91 75.21 71.77 0.75

Wang rule Wang (1994) 10 : 7 : 5 62.97 65.23 20.78 6.17
Ripley rule Ripley (1993) 10 : 8 : 5 64.05 67.06 22.93 6.19
Fletcher–Goss rule Fletcher and

Goss (1993)
Low 10 : 11 : 5 66.29 68.76 63.43 0.90
Medium 10 : 16 : 5 70.30 72.23 63.17 1.25
High 10 : 21 : 5 70.68 71.92 69.45 0.63

Paola rule Paola (1994) 10 : 22 : 5 70.39 73.02 20.12 7.29
Garson (1998) r55 10 : 42 : 5 72.88 75.18 19.41 7.74
Garson r510 10 : 85 : 5 74.12 77.45 19.96 9.14
Optimal Brain
Surgeon (OBD)

LeCun et al.
(1990)

– 75.48 – –

Optimal Brain
Damage (OBS)

Hassibi and
Stork (1993)

– 75.26 – –

Genetic algorithm
(s51)

Proposed
method

10 : [20–83] :
[0–15] : 5

10 : 73 : 10 : 5 70.53 78.34 19.96 15.29

10 : 73 : 5 71.23 77.03 19.96 15.29
Genetic algorithm
(s50)

10 : [20–83] :
[0–15] : 5

10 : 74 : 14 : 5 71.62 79.63 24.33 13.44

Mean, max, and min accuracy (%) are measured for the verification set. Standard deviation is
s. Both Optimal Brain pruning methods start by a 10 : 40 : 5 topology. Furthermore, it is
practically infeasible to run the two Optimal Brain methods 50 times, as the time required is
prohibiting. Hence the corresponding statistics are not reported here.
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10 : 73 : 10 : 5 solution is optimal by yielding 78.34% accuracy with respect to the

verification set. In the second run, however, after five generations it becomes

apparent that a second hidden layer might not be required at all. Thus, the

discovered optimal solution is a 10 : 73 : 5 structure resulting in a slightly worse

accuracy of 77.03%. The solution space searched as well as the locations where near-

optimal neural network skeletons have been discovered are presented in figure 4.

The solution space for this data set is quite small, and as a result it is quite probable

that the same architecture can be assessed more than once. This fact has a positive

effect as it might smoothe the impact of the noisy fitness evaluation problem

somewhat.

When the sacrifice percentage is set s50, solutions that optimize performance

regardless of complexity are in fact sought. Quite naturally when no pressure on

complexity is put (s50) the accuracy is higher as opposed to when some pressure is

exerted (s51). The evolution of solutions is shown in figure 5 where five runs are

averaged. Accuracies between 76.41% and 79.63% are achieved, in all cases better

Figure 2. Pruning a 10 : 40 : 5 network by Optimal Brain Damage (top) and by Optimal
Brain Surgeon (bottom). The algorithm can find a network that performs equally well and has
approximately 150 fewer links. Performance is only negligibly increased, however.
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than that of conventional methods. As is evident in figure 5, because no pressure is

put on it, complexity grows generation by generation.

Both the classification results using the most accurate solution (10 : 73 : 10 : 5) and

the reference data are shown on figure 6 for comparison. The accuracy matrix for

this topology is presented in table 3. Let us recall the fact that genetic algorithms do

not converge to a single point in the solution space. This known property can be

turned into a strong advantage as several near-optimal individuals are produced,

highlighting different aspects of feasible solutions. In this case some solutions are

slightly more accurate whereas others are less complex. Some solutions have one

whereas others have two hidden layers. This phenomenon gave rise to the theory of

ensembles (Liu et al. 2000).

Figure 3. Two typical runs with the accuracy-over-complexity fitness function. The sacrifice
percentage is set to s51. In run 1, a 10 : 73 : 10 : 5 solution is discovered after 10 generations,
yielding an accuracy of 78.34%. In run 2, a different evolution path reveals a single-hidden-
layer topology of 10 : 73 : 5 with accuracy of 77.03% as optimal. This figure shows complexity
not accuracy.
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The fact that in this experiment setting s50 or s51 produces accuracy of a similar

level does not mean that that complexity plays a negligible role in the optimization

of the fitness function proposed. The explanation is rather that this classification

problem is particularly difficult. Because this classification problem is so difficult, it

is pointless to relax the sacrifice percentage, i.e. test for s52, s53, etc. Putting more

pressure on complexity will eventually lead to less accurate solutions as there is no

space for large improvements here. It is expected that this will be different in easier

classification problems.

5. Conclusion

In summary, a method is presented here that addresses the design of topology in

neural networks for classification problems. The solution is achieved in a relatively

automated fashion. The proposed fitness function contains essentially one

Figure 4. Areas searched by different methods tested in this paper as shown in table 1. The
proposed method searches in the shaded area and reveals several solutions that are superior
to those suggested by heuristics. The small squares show actual topologies suggested by
heuristics in the literature that were compared here. Letters in the square brackets
show the reference in which the heuristic was introduced, i.e. [a]5Wang (1994), [b]5Ripley
(1993), [c]5Fletcher and Goss (1993), [d]5Hecht-Nielsen (1987), [e]5Paola (1994), [f]5
Kanellopoulos and Wilkinson (1997), [g]5Hush (1989).

Figure 5. Average of five runs after setting s50 in the proposed fitness function. Complexity
grows by generation as a result of putting no pressure on it.
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Figure 6. Classification results (top) and the reference source used CORINE (bottom) for
comparison. The best-performing network discovered by the proposed method (s51) is used
for the classification yielding 78.34% accuracy for the validation data set and 80.41% accuracy
for the complete image. The striping present in the top image is not present in the bottom
image because the reference source (CORINE) was compiled using manual photo-
interpretation as well as a subset of the available input bands.
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user-defined parameter with intuitive meaning. The other two parameters (cmin and

cmax) are bound to the computing resources available. It is found to outperform all

conventional paradigms tested. Specifically, the heuristics tend to underestimate

complexity. Of these, the Kanellopoulos–Wilkinson rule gives the best results in

terms of accuracy. State-of-the-art pruning methods are, by design, efficient in

pruning but not in increasing accuracy towards the discovery of a near-optimal

solution. On the number of hidden layers, when seeking to optimize accuracy the use

of a second layer is desirable. Overall the results of the neural networks tested in this

experiment are heavily dependent on the topology chosen. The variance of

classification accuracy across all topologies explored, shown in table 1, is

approximately¡14%.

Regarding the computational requirements it became evident that pruning has

comparable demands to the proposed method based on the genetic algorithm.

Currently a little more than one day is required to complete training with the

proposed method and a little less than one day with pruning. All tests were done on

a computer with a dual 2.80-GHz processor and 3 GB of RAM.

Heuristic searching is fast but clearly sub-optimal. Speed may appear as a

desirable trade-off in some applications, but here the goal set is primarily accuracy.

In conclusion, it should be considered preferable to search for one day and have

evidence that a near-optimal solution is discovered as opposed to searching for

practically the same amount of time based on heuristics without any evidence that a

better solution is infeasible. The proposed method also contains some elements that

need to be set ad hoc. Nevertheless searching is based on a far more efficient method

than the deterministic method. Also, the setting of the parameters is quite easy and

straightforward as opposed to the previously used fitness functions such as that used

in Stathakis et al (2006).

Ideally searching with the genetic algorithm should cover for the theoretical

bounds of the number of hidden nodes per layer, but this can be relaxed in practice.

It is important to note that when the search range set is insufficient, the algorithm

Table 3. Accuracy matrix for the best topology, discovered by the proposed method, i.e.
10 : 73 : 10 : 5.

Training
Khat50.81 ATF WET FOR WAT AGR User’s

ATF 1123 137 64 51 12 81.0
WET 57 870 212 16 9 74.7
FOR 35 192 937 7 11 79.3
WAT 38 30 24 1163 19 91.3
AGR 32 10 31 1 1258 94.4
Producer’s 87.4 70.2 73.9 93.9 96.1 84.41

Testing
Khat50.73 ATF WET FOR WAT AGR User’s

ATF 1018 196 82 93 14 72.6
WET 94 770 242 31 10 67.1
FOR 52 217 847 17 15 73.8
WAT 61 47 41 1171 50 85.5
AGR 40 21 41 3 1141 91.6
Producer’s 80.5 61.6 67.6 89.0 92.8 78.34

‘Producer’s’ and ‘User’s’ refer to the percentage accuracy.
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indicates so by pointing to solutions on the edge of it. In the future, the same fitness

function can be tested to concurrently perform feature selection as well, by

incorporating the number of input nodes in the complexity coefficient. The method

was tested here in one example that is not particularly large. There should be no

reason why this method will not work on larger problems provided that computing

power is available. It is interesting to note that the concurrent evolution of input

dimensionality will lead to feature reduction, which in turn reduces the topology

needed. It is expected that this property will aid the method to scale up in larger

classification problems.
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